EXAMPLE PROBLEMS FOR GRAVITY:

1. What is your mass? How much do you weigh on Earth? The mass of Earth is $6 \times 10^{24} \mathrm{~kg}$ and the radius of Earth is 6400 km .

A: for $m=70 \mathrm{~kg}, \mathrm{Fg}=684 \mathrm{~N}$.
2. Look up the masses and radii of other planets and calculate your weight there.

A: for $m=70 \mathrm{~kg}, \mathrm{Fg}=259 \mathrm{~N}, 621 \mathrm{~N}, 260 \mathrm{~N}, 1734 \mathrm{~N}, 730 \mathrm{~N}, 620 \mathrm{~N}, 777 \mathrm{~N}$ for Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune, respectively.
3. Imagine Earth were 100 times smaller. How much would you weigh then?

A: for $\mathrm{m}=70 \mathrm{~kg}, \mathrm{Fg}=6.84$ million N .
4. The distance to the Moon is $384,000 \mathrm{~km}$, and its mass is $7.4 \times 10^{22} \mathrm{~kg}$. Where between the Earth and the Moon would you have to be to be truly weightless?

A: $345,617 \mathrm{~km}$ from Earth (without accounting for the centrifugal force).
5. Look up orbital periods of all planets and compute their distances from the Sun. Compare them with what you find online.

$$
\begin{aligned}
\text { A: for } \mathrm{P} & =\text { 88d, 225d, 687d, 4331d, 10747d, 30589d, 59800d } \\
\mathrm{a} & =0.39 \mathrm{au}, 0.72 \mathrm{au}, 1.52 \mathrm{au}, 5.2 \mathrm{au}, 9.53 \mathrm{au}, 19.14 \mathrm{au}, 29.9 \mathrm{au} .
\end{aligned}
$$

6. Now imagine that orbital periods of all planets are exactly the same, but that the mass of the Sun is 5 times less. How far would the planets be from the Sun?

A: a $=0.23 \mathrm{au}, 0.42 \mathrm{au}, 0.58 \mathrm{au}, 0.89 \mathrm{au}, 3.04 \mathrm{au}, 5.57 \mathrm{au}, 11.2 \mathrm{au}, 17.5 \mathrm{au}$.
7. Let's say that the Sun is 20 times more massive than it is. How would that affect the length of a year if Earth was at the same distance?

A: $\mathrm{P}=81.8$ days (0.22 years).
8. Keep the Sun at 20 times its actual mass. If Earth was to complete its orbit in 1 year, at what distance would it need to be?

A: $\mathrm{a}=2.71 \mathrm{au}$.
9. We discover a planet around a star that orbits it every 12 years. We then measure the distance between that star and that planet to be 3 astronomical units. What is the mass of the star?

A: $\mathrm{M}=0.19 \mathrm{M}_{\text {sun }}\left(3.76 \times 10^{29} \mathrm{~kg}\right)$.
10. Gravitational acceleration on Earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Where does that number come from?

$$
\mathrm{A}: \mathrm{Fg}=\left(\mathrm{GmM}_{\text {Earth }} / \mathrm{R}^{2}\right)=\mathrm{mg} \rightarrow \mathrm{~g}=\mathrm{GM}_{\text {Earth }} / \mathrm{R}^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2} .
$$

